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Adiabatic interaction of N ultrashort solitons: Universality of the complex Toda chain model
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Using the Karpman-Solov’ev method we derive the equations for the two-soliton adiabatic interaction for
solitons of the modified nonlinear Scliinger equatiofMNSE). Then we generalize these equations to the
case ofN interacting solitons with almost equal velocities and widths. On the basis of this result we prove that
the N MNSE-soliton train interactionN>2) can be modeled by the completely integrable complex Toda
chain (CTC). This is an argument in favor of universality of the complex Toda chain that was previously
shown to model the soliton train interaction for nonlinear Sdhwger solitons. The integrability of the CTC is
used to describe all possible dynamical regimes ofNfsmliton trains that include asymptotically free propa-
gation of allN solitons,N-soliton bound states, various mixed regimes, etc. It allows also to describe analyti-
cally the manifolds in the M-dimensional space of initial soliton parameters that are responsible for each of
the regimes mentioned above. We compare the results of the CTC model with the numerical solutions of the
MNSE for two and three-soliton interactions and find a very good agreement.
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I. INTRODUCTION Under some additional restrictions imposed on the soliton
parameters, which ensure the validity of the adiabatic ap-
The analytical description of the dynamics of picosecondproximation, the above dynamical system is reduced to the
solitons in single-mode nonlinear fibers is based on the noreomplex Toda chaifiCTC) equations witiN nodeq10-12.
linear Schrdinger equatioriNSE) [1,2]. The NSE serves as Extensive use of the fact that the CTC is a completely inte-
a very good integrable model admitting comprehensive ingrable model permits to classify soliton parameter regions
vestigation in the framework of the inverse spectral transwith different asymptotic regimes of th&l-soliton train
form (IST) [3]. IST provides the complete analytical descrip-[5_g]. It was also shown in Ref8] that the CTC can be
tion of the soliton interaction in a generic case of 3550ciated with any equation from the NSE hierarchy.
asymptotically freeN solitons moving with pairwise differ- One of the purposes in the optical fiber soliton communi-

ent velocitied 3,4]. On the other hand, the practically impor- 4iion is to achieve a bit rate as high as possible. A natural

tant case, especially in a soliton-based fiber transmission : o Airanting :
> . . . . way in this direction is the use of shorter optical pulses. It
deals with the so-calleN-soliton trains, i.e., with an ordered y P P

sequence of (N=2) solitons that are spaced apart alrnostshould be noted, however, that when dealing with ultrashort

equally and have almogbr exactly equal amplitudes and Op“‘??' pulses W'Fh duratior=100 fs, the' .NSE should be
velocities. In a number of recent papéEs-g], an effective modified to take into account some additional effects, such

formalism was developed for studying the dynamics of well-25 the nonlinearity dispersion, the intrapulse Raman scatter-
separated NSE solitons within thésoliton train. This ap- Ind: and the higher-order dispersigty. As a rule, the extra
proach is based on a generalization of the two-soliton quasferms added to the NSE violate its integrability. On the other
particle method by Karpman and Solov’Es] to the case of hand, if these additional terms are small, the IST-based soli-
N solitons. In the framework of this approach, the solitonton perturbation theory is usualy treated as the relevant
interaction is governed by a dynamical system fbr goliton method to account for their influence on the soliton behavior
parameters. Such an approximation is called adiabatic bél?’—.la- . i

cause interaction between the solitons is displayed as a slow It is remarkable that adding a term accounting for the
deformation of their parameters, a possible presence of rdlonlinearity dispersion to the NSE preserves the integrability
diation being ignored. It is important to realize that the above?f the equation. In other words, the modified nonlinear
generalization from two tdl solitons is nontrivial because of Schralinger equatiofMNSE)

lack of the superposition principle for the nonlinear dynami- . . _ ) )
cal system. iU+ 3U+ia(Julu)+|ulfu=0, (1)

is still integrable by means of IST, though the associated

*Email address: gerjikov@inrne.bas.bg spectral problem(the so called Wadati-Konno-Ichikawa
TEmail address: doktorov@dragon.bas-net.by spectral probleni16], or quadratic bund)edoes not belong
*Email address: jyang@emba.uvm.edu to the familiar Zakharov-Shabat class. The parameten
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Eqg. (1) governs the strength of the nonlinearity dispersion.soliton train. In Sec. Ill we show how this result can be
The casee=0 corresponds to NSE. Thereby, the effect ofgeneralized to the MNSHE-soliton train forN>2. We show
the nonlinearity dispersion is considered nonperturbatively irin Sec. IV that after some additional assumptions the corre-
Eg. (1). Moreover, we have to stress that it is the completelysponding dynamical system for the soliton parameters ac-
integrable mode(1) that should be considered as a true start-quires the form of the CTC. Thus we find that the CTC is
ing point for analytical investigation of subpicosecond soli-characteristic not only for the NSE hierarchg], but has
ton dynamics. Indeed, it was shown in Rgif7] that numeri- ~ wider field of applications. This is an argument in favor of its
cal simulation of the soliton propagation according to theuniversality.
MNSE (1) revealed various kinds of dynamical behavior that In Sec. V we show how the integrability of the CTC can
cannot be accounted for by treating the nonlinearity disperbe used to determine the dynamical regimes ofNFeoliton
sion term of the MNSE(1) as a perturbation term in the trains. We demonstrate on the examplefNef2 andN=3
NSE. Analogous idea in treating the perturbed NSE was dehow one can describe analytically the manifolds in the
veloped by Kodama and Hasegawa in R¢fs3,19. There  4N-dimensional space of initial soliton parameters that are
the NSE with perturbations like the third order dispersion,responsible for the(i) N-soliton bound state regiméij) as-
nonlinear gain, and nonlinear dispersion was treated as wmptotically free regimesiii) various mixed regimes, etc.
perturbed higher-order NSE. Although the analysis follows closely the ideas developed in

The relevance of Eq1) to the problem of ultrashort pulse Refs.[5—7] the description of the corresponding manifolds
propagation in fibers was demonstrated in R¢f0,21]. differs from the ones for the NSE soliton trains. The reason
MNSE (1) is also used in plasma physii&2] and is relevant  for this lies in the fact that the CTC field3;(t) are param-
for description of a deformed continuous Heisenberg ferroetrized in a different way; in particular, 1@; depend not
magnet[23]. It is the Alfven waves in magnetized plasma only on the soliton phases (as is the case for the N$But
where the first successful application of IST to the quadrati@lso on the soliton amplitudes.
bundle was achieved on an example of the derivative NSE In Sec. VI predictions of the CTC model are compared
[24], which is Eq.(1) without the last term. Both equations with the numerical results from the MNSE and find an ex-
are interrelated by a gauge-like transformation, see, for exeellent match for most regimes witi=2 andN=3. We
ample, Refs[25-27. The soliton solutions and the Hamil- found some disagreement between the CTC and numerical
tonian structures of the MNSE were obtained for the firstMNSE solution in the regimes when CTC predicts a very
time in Refs.[26,27]. N-soliton solutions were further re- slow soliton separation.
derived by different methods: by IST using the above rela-
tion with the derivative NSE28], by Backlund and Darboux II. TWO-SOLITON INTERACTIONS FOR THE MNSE
transformationg29], by technique of determinant calcula-
tions[30], by the Hirota method31], and by thed method
[32]. It should be noted that the solutions obtained in thes
papers refer to the general case of asymptotically free sol
tons and being exact were too complicated for practical use. o 1

Recently, a novel parametrization for the MNSE solitons b,=— _( K2 — —)[0-3,(13]+2ikQ(I>, 2)
was proposed within the framework of the Riemann-Hilbert a 4
formulation of IST[33]. The convenient parametrization of
the MNSE soliton facilitated the development of an effective ai [, 1
adiabatic soliton perturbation theory for the MNSE that is O=— ?( k®— 4
able to take into account nonzero terms in the right-hand side
of Eq. (1), see[33].

The next natural step is to derive dynamical equations of ~ +kQxo3—2i akQS)CD-
the Karpman-Solov’ev type for the adiabatic evolution of the
soliton parameters for the MNS-soI_iton tr_ain. Several Here the Hermitian matrix
guestions arise in the process of solving this problem. Is it
possible to associate afrnode chain model, like the CTC, (0 u)

First of all we summarize the basic results concerning the
éoliton solution of the MNSE1) [33]. This equation admits
the Lax representation

4i i
3 S 2m2
—K°Q+2ik’°Q%rs— —kQ

2
) [0-3!(1)]+

with this dynamical system? Will this chain model be differ- Q=
ent from the CTC and, therefore, is the CTC valid only for
the NSE hierarchy? How well do the numerical simulations
of the MNSE with adiabatid\-soliton train initial conditions ~stands for the potential of the spectral probl€®), k is a
agree with the chainlike model predictions? All these quesspectral parameter. There exist various parametrizations of
tions will be answered below. the soliton solution of the MNSE, the first one having been
The purpose of this paper is to derive a dynamical systen@roposed in Refs.26,27. We follow here the parametriza-
for the 4N soliton parameters for the MNSE-soliton train. ~ tion given in Ref.[33], which was proven to be useful for
To this end we will generalize to the quadratic bundle thePractical calculations and admits a simfleough nontrivial
similar investigations performed for the NSE. In the nextreduction to the NSE forr— 0. The one-soliton solution of
section we apply the Karpman-Solov'ev approach to theMNSE related to the discrete eigenvalueg,, =k, of the
MNSE (1) and derive the dynamical system for the two- spectral equatioi2) has the form

u O
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v ke Z+ker d¢ w1/t
—i_ " Al - _ ’ AN s
uS(th)_I o (ke2+?e_z)2el ’ (3) dt a av Odt lu‘(t ) dt
2 s}
where for notational simplicity we have dropped the index 1. + 4i2 ?Z—R_z z(K3e?+ k37 ?)
Herek=kg—ik,, k>0, \=4k’>—1=pu—iv, v? J-=(ke 2+ ke?)
v © 2 ke*+ke? 10
== ~[x—&0)], ¢="z+a(0), glkerke D] 0
L dé /_L2+1/2+ 1 (ftdt’ (t’))( dv d,u)
T L2 T Iz M — Vs
E0)==" e, D= (uP At o). (4 dt 202 a?vl o dt " dt
o
diq (= dzR_ ) L, =
It should be stressed that the solité8) is not of the T _(ke “+ Ke?)? [k*|(ke ?+ke?)
hyperbolic-secant type with a real argument, characteristic
for the NSE. It is specified by four real parameters v, 1 — oz =
£0), and 8y with (—u/a) being the soliton velocity, —g(Ake&—ake )+ — (ke + Ak ™) |.
(alv) is its width, 5oy and§ o) are initial phase and position
of the soliton. To carry out the limit reduction to the NSE, (13)
one should decompose the spectral parameter in the follo

V\ff should be noted that for the symmetric perturbations obey-

ing manner: -
ing the condition exp-ig(zt)Ir(zt)=exdid(—zt)r(—zt),
1 « i.e.,R_=0, the complicated integrals in the right-hand sides
k=3 - E(MNSEnL ivNSB+0(a?), a—0, (5)  of Egs.(10) and(11) disappear.

Now we have all the necessary information to derive the
) . NSE NSE -1 Karpman-Solov’ev-like dynamical system of equations for
which gives ¢ u/a)—2u"F and (a/v)—(2v"°9 7%, as  the adiabatic interaction of two well-separated MNSE soli-

should be. o ) tons. Below we will formulate more precisely, the condition
If there is a small perturbation in a system described bysf gyfficient separability of solitons. We suppose that a two-
the MNSE, we will deal with a perturbed MNSE soliton solution to the MNSF1) is well approximated by the

sum of two MNSE solitons
iU+ SUgtia(|ul?u) + [ulPu=r(x,t), (6)
u(x,t)=uq(z4,t) +uy(z,,t), (12
wherer (x,t) describes a functional form of the perturbation. ) o .
In what follows we will restrict ourselves to the adiabatic Whereu;(z;.t), j=1,2, is given by Eq(3) with
approximation of the soliton perturbation theory. In other
words, we suppose that a perturbation causes a slow varia- 7= ﬂ(x—g-)
tion of the soliton parameters only. The evolution equations ) a I
for the perturbation-induced soliton parameters are given in

Ref.[33]. Here we write them in terms of the parametgts M

The key equation has a very simple form ‘f’J:V_jZiJr 9 -
dk 1 zf“ R 4 7 t)= 1J'tdt' t)+
qi2¢ fw(ke_zTez)z z, (7) (1) = 2o it + o,

where R. = exq—i¢(z,t)]r(z,t)iexp:icﬁ(—z,t)]r_(—z,t). Tak-

1 [t
()= —— Tt 20¢1 :
ing into account Eq(4), we obtain 9(1) 2a2fodt L)+ wi(t) ]+ Sjo,

du (= k3e?—K3e? where we took into account the possible evolutiorugfand
T laJ ——————R.dz (8 »j. Now, by substituting Eq(12) into the MNSE(1), it is
—=(ke " *+ke?) easy to see that, because of the nonlinearity, each soliton
feels the presence of the other one and the interaction is
dv = k3e?+ kie~? described by the perturbed MNSE
az— ozf T T2 +dZ. (9)
7°o(ke +ke) iuit+%ijx+ia’(|Uj|2Uj)x+|Uj|2Uj:r]‘, (13)
Evolution of ¢ and § is given by the following formulas: where

056617-3



V. S. GERDJIKQOV, E. V. DOKTOROQOV, AND J. YANG

— 2 2 2 2
rj=—ia(2luj|?uz_j+ujus_;)x—(2[u] u3_j+uju3_j()1.4)

It should be stressed that the perturbati@d) arises effec-

tively as a result of treating two-soliton solution as the sum

(12) of the one-soliton ones.

Now we formulate the conditions that provide the repre-

sentation(12) as a two-soliton solution of the MNS@). At
first we expresg, in terms ofz,

Vo=V
1+

22=

1+ 12
Z p (§2—&1).
We suppose that solitons have almost equal widths, i.e.,

Vo—V
|v2 1I<1, 15

Yo

wherevy=(1/2) (v, + v,). Hence, we have

Vo
22_21:;(52_51)- (16)

Calculation of the overlap integréf . u,(z;,t) ux(z,,t)dx|
(or, equivalently, [”_dX|ui(z;,t)us(z,,t)|) gives an ex-
pression containing the factor dxp(vy/a)(&—&)]=€ for

&,>&,. Just this exponential factor determines a measure of
overlapping neighboring solitons. We take in the following:

Vo
Z|§2_§1|>1 (17

(or e<1), which means weak overlapping between the soli-

tons.

Let us consider now the phase differene®— ¢4
=(uolvy)zo— (mq/vy)z1+ 8,— 81. Accounting for Egs.
(15 and(16) we may write

1 Vo= 11 M2 Vo
—pr1=—| pup—| 1+ +—= —(&—
b= VZ[Mz 1 v )Ml Z3 p 2(52 &1)

+ 8, 6.

Since we consider solitons moving with small relative ve-

locities we assume

|M2_,U«1| <
Yo

1. (18)

Then the phase difference will not contain thdependence.
Furthermore,

M2 Vo M2
o b E)=",

1+

)(52_51)-

Vo— V3
V2

As the last condition we suppose

PHYSICAL REVIEW B4 056617

|vj— ol (62— 1) <1, (19

hence, the phase difference takes the form
Mo
b2~ ¢1:;(§2— §1)+ 82— 0.

Therefore, the conditiond5), (17), (18), (19) provide a pos-
sibility to consider a two-soliton solution of the MNSE) as
the sum of the forn{12).

To derive the Karpman-Solov'ev-like equations for the

soliton parameters, we use E@g)—(11) with the perturba-
tion (14). Accounting for the above conditions, we obtain
after simple but tedious calculationg=<1,2),

dX\; ) Wiv: | 2Wa_ v :
J_ 1Y 373~ ~A-iy
dt N« Ks_j
=1 — 2 x| WPy =—e ¥
dt o2 3—j i3 ]k3_]
e
+ij3,jre e -, (21
3—j
dv; 2
T T [
3-]
v_vJ?v_vs_jk—j_e‘¢>e‘A, (22)
3-]

dg 1 2 o
W=—;,¢LJ-—I-(—1);1/1-1)3,]- Jodt mi(t")

X

ki — k.
szwg,j_—Je*'d’—w_ijg,jk—Je"/’ e A
3—j 3-]

i
+;v3j([<1+w?><1—2v7,-2>
; 2 Ki 2 2
+4ISj]WjW3,j?—e Y[+ w)(1-2w))
3-]

— k.
—4isj]v_vjzw3,j—k3' 'e"”> e 4, (23
-
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dal 1 2 2 J2I ! ’ ’
E:E(MJFV])_(_D —aliva fodt mi(th)
ki ok
X()\joZW3_j_—]eIl//_)\jW_sz3_jk_JleH//)eA
3—j 3-]
[
—;AjV3_j([(1+W,-><1—2va>
ki .
+4isIwiwz_;——e ¥
3]
—[(1+w))(1-2w})—4is;]
— k)
XW]-W3,J-K_]€ e ~. (24)
Above we used the notations
k] Vo
Wj::_—eXF(_lej)a A—;|§2_§1|,
j
=@(§ —&)+6,—6 s-=1arctan—vj
=" (&= &)+ 8= 01, §=3 T+

where the last relation follows fromj=4kj2—1=,uj—ivj .
Equations (21)—(24) are the analog of the Karpman-

PHYSICAL REVIEW E 64 056617

whereu; is the MNSE soliton(3) whose center of mass is
located at{; . Assume that; <&, <...<&y. Inserting this
ansatzinto the cubic term of the MNSIL) gives

N
|u2|u:j2l |uj2|ui+,2¢| (|uj2|u|+2uj2u,)+j

>

UjU|Un.
#1#n

(26)

Straightforward analysis shows that the integrals in Efjs-
(12) corresponding to each type of terms in Eg6) are of
the following order of magnitude:

U2,  UBULeO(e kM),

Uju,, j<l<ne0O(e =!1==nl),

Here e is of the order of exp-(vo/a)|§—4|] for |j—I[=1.
Because we keep only terms of the ordefrpfve see that it
is enough to take into account only terms wiith-1/=1. In
other words, the “triple” terms likeu;u,u, can be neglected.
Quite analogous is the situation with the cubic terms contain-
ing X derivative.

Second, as in Sec. Il, we pose the conditions

lvi—w|<vo, |uj—wml<vo,

voléoj— Eal>1,  |vj—wl|éoj— éal <1,

wherevo=N"'={L v;, uo=N"'=]L,u;. They mean that
we consider the chainlike configuration Bf solitons with
equal or nearly equal velocities and widths. Substituting the

Solov’ev equations in the case of the adiabatic interaction ooliton solutions(3) into the perturbation
two well-separated MNSE solitons and reduce to the NSE

dynamical system in the limi5).

The dynamical systeni21)—(24) is rather complicated
and needs further simplification to perform its analytical in-
vestigation. Integrable approximation is of special impor-
tance, and finding such an approximation is one of our pur

rj=—|:j2+1 [i (2] uj]2uy+ u?up) -+ (2] up+ u?u)) ],
27

and calculating the integrals in Ef), we obtain

poses. But first of all we will generalize these equations to

the case ofN MNSE solitons.

III. N-SOLITON TRAIN INTERACTIONS FOR THE MNSE

wh
Since the Karpman-Solov’ev-like dynamical system is

nonlinear, it does not allow the superposition principle. It is
physically clear because in the case of thesoliton train
with N=3 a middle soliton will be influenced by its neigh-
bors from both sides. Hence, it is not possible to describe th
interaction ofN=3 solitons within the framework of two-
soliton interaction like21)—(24).

The first remark we should keep in mind is that the inter-

d)\J 2WJV] 2 W, v .
(20 e ajlg—is
i kj( > I;ﬂ Sjj E e file™!siivy, (28)
ere
1 for |=j+1, Vo
SiITIZ1 for1=j—1, T 87|

e

l!/uEl//F'//j:%(fl_fj)Jrg'_‘si' 29

action force between the solitons is of the order of theirThe corresponding formula fqe; and »; follow from Eq.
overlap. Therefore, we can take into account only the(28) as real and imaginary parts. It is not difficult to derive

nearest-neighbor interaction. Indeed, for thesoliton train
we assume that

(29

N
UZE Uj,
j=1

also the equations for the rest two parameigrand o;,
generalizing those in Eq$23) and (24) for the two-soliton
interaction. Keeping in mind, however, our aim to formulate
the equations for the adiabatic interaction of the MNSE soli-
tons in the form tractable analytically, it is sufficient to rep-
resent the equations f@; and 6; in the following form:
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dgj M 1 N
So=—L+0(e), (30) =N 2, %) (35
ds; Ml 2 The next step is to derive the evolution equation @r
TS +0O(e). (3D (35). It should be noted first of all that up to terms of the
2a° order of e

Indeed, let us impose the conditions on the scattering data of

the spectral probleni2), which correspond to the adiabatic %: 2 (u2+ 1)
approximation. Just as for the NSE, we require that the ei- dt 242N =2 7 !
genvalues of the Lax operator are clustered around their N
mean value, 1 2, .2
= +vo+ 2uo( 1) — mo)
1 2«
|)\j_7\0|220(€). Ao:N 1_21 Aj. +2vo(vj— o) +0(e)]
Thus we obtain the estimates in Ecﬁ§0)_ anq (31), which . 1 [M0+ V0+ o(e)].
mean that we can neglect the perturbation-induced evolution 2 2

of the parameterg; and 6; as compared to their main-
perturbed evolution. At the same timg; andw; characterize ~ Then, in view of Eqs(30) and(31), we get
the initial conditions and it is important to take them into
account in the right-hand side of E@8). dQ; i , [
d_t]: ?(Mo—l Vo) j— E(M,-ZJF Vit pgt vp)

IV. DERIVATION OF THE COMPLEX TODA

CHAIN MODEL )
. . 2[ (MJ MO) _(V]_VO) 2”’0(:“1 |V)]
The next important step towards deriving a modelNof 2
MNSE-soliton interactions tractable analytically consists in a
i 14
careful account for the terms of the ordereofFirst note that =20 4 O(e). (36)

because the right-hand side of E@8) is of the order ofe,

we may approximaté; by |ko|e™ ', wherek, is the mean

value Finally, keeping only the leading-order terms and replacing
fi=1 andg;=1 we find from Eqs(33) and(36)

1 N
Ko=— K 2 4
N J'gl ! d Qj: (E) (er+1_Qj_er—Qj—1) (37
dt? a ’
Thereby we neglect terms such |ag— vj|e and|uo— ujle,
which due to Eqgs(15) and(18) are of the higher order ia. i.e., the CTC model. Hence we see that the CTC model arises
Hence, Eq(298) is written as follows: naturally as the integrable limit of the Karpman-Solov’ev-
like equations describing the adiabatic interaction Nf
dnj  4vg 3 o o 0-0; MNSE solitons within the train of solitons with near veloci-
W=—(e eI et Eg)), (32 ties and widths.

@ As we will see in the next section the interactions of the

MNSE solitons are substantially different from the ones of
the NSE. As it can be seen from E&3), the dependence of
Zo Q; on the soliton parameters is different from that for the
— (&1 &)+ 011 NSE case. An important point here is that @ depends
@ explicitly also on the amplitudes of the solitons througjh
=arctafv;/a(1+ )]

where

Vo
Qj+1—Qj=— E(§j+1_§j)_| 7+

—&j+4s; 1 1+4s;|, (33

V. DYNAMICAL REGIMES OF THE N-SOLITON TRAINS

fi=exdi(sj1—s)],  gj=exdi(s;-1—s)]. (34 It is well known that the CTC is a completely integrable
dynamical system. Most of the results concerning the CTC

The recurrent relationi33) can be solved foRQ; with the such as the Lax representation, the integrals of motion, ex-

result plicit solutions, etc., are direct consequences of the classical
-1 results by Toda and MoséB4—36 on the real Toda chain
V . . . .
Q=- —Ogj—i jm+ @§,+ 8+ 8ot >, 8S+4s;|, (RTC). However, there is a qualitative difference between
a the RTC and the CTC when one tries to analyze the dynami-
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cal regimes of the two systems, see R¢fs7,37,38.
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N
Indeed, the Lax representation of the CTEY) is of the (vj,0)=> (vj02=1. (47)
form k=1
S, (39) Due to the fact thak is a symmetric matrix we find also
dr
N
N E rj2:l. (48)
L(n)=2, [0 +ay(Ejsa+ Byl (39 =
N Using the explicit solution foQ;(t) we can estimate the

asymptotic behavior oQ;(7) for 7—o.
Such an analysis for the RTC, i.e., wh@q, a;, andb;
are real, shows thdt) r; and¢; are real valued(ii) ¢;#

M(T)z,; a(Ejr1;—Ej ) (40)

where for j #k. Therefore, one finds that for—«~ each “particle”
2 N Q; moves uniformly with a velocity 2; [35,36. Since{; are
T=Col, Co=2vp/a”, a=zexpQ+1~Q))/2, pairwise different we conclude that the only possible dy-

namical regime is the asymptotically fré&FR) one.

The same considerations applied to the CTC lead, how-
ever, to a qualitatively different results. Indeed, nowand
{j=«;+in; become complex valued and there are no re-
strictions on the eigenvalugs. Then evaluating the limits
of Q;(7) for 7—co we find that the asymptotic velocity 6F;
is determined by 2;=2Re{;. As a result we have much
wider spectra of dynamical regimes. The reason for that is
also in the fact that CTC can be viewed as a dynamical
system ofN “complex” particles that are characterized not
only by their positions R®; and velocitiesv;=Reb;, but
also by their phases and phase velocities; the latter are re-
lated to ImQ; and Imb; . Physically speaking these “com-
plex” particles have, just like the bright NLE solitons, an

N internal degree of freedom. This makes the interaction be-
Aq( T)zz rﬁe72§k7' (42)  tween the particles more complicated and as a result the

k=1 number of the possible dynamical regimes increases substan-
tially.

The AFR that takes place i; # «, for j #k is just one of
the options. Another option i8;=k,=...=ky=0, which
corresponds to a bound state regitBSR) of all N “com-
plex” particles (solitong in the train. There is also a large
class of intermediate or mixed regim@dR) for which only
several of the parameterg are equal. For example, ¥;
= K,= K3> K, - - > Kk then the first three particldsolitong
will form a bound state while the rebt— 3 particles will be
asymptotically free.

Note that this variety of regimes exist in the generic case
when the eigenvalue§ of L are pairwise different; so in the
previous case we assume that# 7,# 3. One may con-
sider also degenerate regim@ehen two or more of the ei-
genvalues; become equaland singular regimefsvhen one
or more of the function®;(7) develop singularities for fi-
nite 7J.

There is also another important consequence from the in-
tegrability of CTC. From the Lax representation one easily
finds that the eigenvalue§ are the integrals of motion for
the CTC, i.e.,{; are time independent. Therefore, we can
evaluate them, for example, at the initial momeat0 using
for this the initial values of the soliton parameters. Then,
knowing ¢; and, more specificallyx; we can predict the
asymptotic regime of the correspondiNgsoliton train.

bj:_%de/dT:_)\j/4V0, (Ei,j)lnzéiléjn;
see Eq.(36). In fact, without loss of generality we can as-
sume that tt =0. This can be achieved by subtractifigl
from L, where {,=3{_,{;/N=X{_,b;/N. Note that{, is
obviously an integral of motion for the CTC, i.a{y/d7
=0.

The explicit solution to the CTC is given by

A(T)
A 1(7)’

a(7)=01(0)+In (41)

whereAy=1,

A(r)=

2
r....r
1s|1<...<lksN( 1 Ik)

XWz(lk,lk_l, - ,Il)exp[—2(§|l+ e +§|k)’7'],
(43

and

N
Ay=WA(N,N—1,....2,1)exd —2({y+ - - - +gN)T]kH r2.
=1
(44)

Here {; are the eigenvalues of the Lax matrik,
W(ly,---,l,) denotes the Vandermonde determinant:

W(l, ... .= 11

s>p
sipefly,---hd

(28s=28p), (49)

andr; are the first componentgzz?jyl of the eigenvectors
LJJ:{J-JJ- y (46)
normalized by
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We can also answer another question: describe the set tff [d| <A, ,, both roots{; , become real and we go into the
initial soliton parameters for which the corresponding AFR.
N-soliton train will develop a specific dynamic regime. In It was already noted that the conditiohs=0,7 involve,
other words, we can describe the set of initial soliton parambesides the phase$j, also the amplitudes of the solitons
eters for which we will have, say, ai-soliton bound state throughs;. In particular, forvg=a=1 andu;=0 we have
regime. To describe the BSR all we need to do is to solve the, +s,= w/4. Therefore, two such MNSE solitorattract

corresponding characteristic equation each other and form a bound state providge- §;= 7 and
repulse each other(which leads to AFR for §,—8;=0.
def(L—¢)=0, (49 Such behavior of the two-soliton interaction is quite to the

and impose the conditior,= x,= - - - = ky=0. Since the contrary to .th.at kno_wn for the NSE t-wo-solilton interaction.
coefficients of Eq.(49) and consequentlyc; will be ex- The explicit solution to the CTC withN=2 is of the form
pressed in terms of the initial soliton parameters, we will cosh2¢,Cot— 71)
have a set of nonlinear equations describing the BSR. Analo- Qi(tH)=—0Q,(t)=In 5 ,
gously, if we need to describe the AFR we must solve for {1
Kj?Ekaorkij. r

We will show how this can be done analytically for the ylzm_l, (54)
simplest nontrivial cases witN=2 andN=3. For generic r2

values ofN this can always be done by numeric means; Onewheregl is expressed in terms of the soliton parame(sis

needs only to solve algebraic equati@®) of orderN. and
Let us briefly describe the manifolds of soliton parameters
responsible for each of the dynamical regimesNet 2 and 2, T
o ; i 1 +yote " +Yo
N=3. As it is clear from the above considerations, we have Y=z In——. (55)
to solve the characteristic equatiofi9) and to express the 2 VYot e -y,

eigenvalued); of L in terms of the soliton parameters. ) ]
Obviously forI'=0 the solutionQ,(t),

A. N=2 case 2 cog YoCot/2+i y10)
For simplicity, from now on we shall consider trains with Qu(t)=In iYo ' (56)
zero initial velocities,u;(0)=0, i.e., in the relevant moving
coordinate system. The matrix Yom A T =£|n y2+1+y,
b a 0 cr,2VYo v Y10 2 —\/y§—+1— yo,
Lo=Lt=0)=| |,
a becomes a periodic function of 7/cy with period depend-
with trL=0 is built from the initial soliton parameters Ing oNYyo:
i i 47
[ Vg i [ _
e oo L _ Tos1=———- (57)
a ZeXF< 2a'° ZF)' =724 NN S|
where Analogously forl'= 7 from Eq. (55) we have
ro=&20)= &1(0), I'=02(0)= d1(0)+4S1145,, 2coshi A ¢ o\ Y5— 1Cot/2— y19)
Q1(t)=—Qa(t)=In TN v ,
d= —vo)lvg. 50 cr2VYo™
(V1(0) vo)lvo (50) (58)
Then
n , —1In Yo~ 1+Yo
| - 11=—5N—F—.
{1~ * b2+ al= iT“'Z\/ngr el (51) 27 y2-1-y,
with The solution is periodic only if/,>1 and the period is

d Tyorm T (59
Acro=2 exd —vofo/(2a)], Yo=x - (52) 22 oA ay2—1

Obviously if I'#0,7 then Rel; ,#0 and we will have an As a conclusion, the BSR fdi=2 provides periodic solu-
AFR. If I'=0, then Re;,=0 and we have a BSR. [F  tions. Forl'=, yo<1 we have AFR and the solution is not

=, then Re, ,=0, i.e., we will have a BSR only provided Periodic.
The final remark in this section is that fgp—0 the so-

[d|>Ag . (53)  lution (54) becomes singular and blows up periodically with
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period 4m/(CoA, 5. In this limit we have two “equal” soli- ~ With Q#0,7. Obviously this leads to AFR. I0=0 or 7

tons with amplitudes;= vo=1 with phase differencer. thenk,= k3 and a MR follows.
(i) Q>0 andq#0. Here bothA andB are real and for-
B. N=3 case mula (63) shows that one roa; is real, while the other two

) ) ) . .. are complex conjugate:
For the case of the three-soliton train with zero initial

velocities the matrix ¢ has the form Reli=—2Re{,=—2Re{;, Or k1=—2k,=—2kK3s,
(66)
b, a; O
hich corresponds to a MR.
- b - e . .
Lo=| @ D2 @, trLo=0, (i) Q>0 andg=0. Now p>0, the cubic equatiof61)
0 a; bs simplifies and is trivially solved by
with 4L=0, {z=+y-p. (67)
N i—ex _vo i—I‘- b. —i—d- Al the roots have zero real parts that obviously corresponds
=2 20 0 270 it to BSR.
(iv) Q=0. If p andq are nonzero, all the roots are real
where and pairwise different,
Vi)~ Yo £1=3d/p, {,={3=—30/2p,
dj:JV—a ro=&2(0)~ é1(0)= &3(0)~ 2(0)
0 we have AFR. Ifp andq are zero, we get a degenerate case
with all three zero roots.
=45 — S+ 4s. ., +4s; . . .
= 0j410)7 i@y T 48+ 1148 (60 The symmetry in the eigenvalues leads also to a symme-
Then the characteristic equation takes the form try in the solutions of the QTC. Therefore, the conflguratlon
(67) corresponds to a particular type of BSR’s. This is due to
B+pl+q=0, (61)  the fact that we restricted so far baghandp to be real. Of
course this is not necessary; moreover, from B8) we see
where that generically bothg and p are complex. If we want to
. e erip i specify the soliton parameters that are responsible for the
p=—15(d1d,+dod3+d d3) +ze 070 (e7 1+e 7 2), BSR we may also use Viette formulas which show that the
_ _ characteristic equatiof61) will have purely imaginary roots
I (. _ _ if pis real and negative anglis purely imaginary. That is
[ o vola r r
a= 64d1d2d3 16e foroif(die” 2+ dgem 1), (62) why we will consider also the configuratidm) below.

(V) p=p,g=—g. In this case we have two qualitatively

It is natural to make use of the well known Cardano for-djfferent possibilities depending on wheth@ris positive or
mulas for solving cubic equations. We first consider thenegative.

cases whemp andq are real. The roots of E¢61) are given Note that sinceg= —awe should modify our reasoning

by as compared to the above analysis. Indeed, githq’, q’

(1=A+B, (=wA+w?B, §3=w2A+wB, (63 real andQ=0 we find thatA= —B. Therefore, f_rom Egs.
(63) and (64) we have that all the rootg, satisfy {,=

where —{k., i.e., are purely imaginary and BSR takes place.
Analogously, ifQ<0 then the rootg satisfy {;=—1{;

3 4 3 q and (3= —{, which leads to AFR
=\/—-=+ =\/—=- 3 2 .
A 2 Q. B 2 Q (64 Hence, we revealed two possibilities to realize bound
5 5 _ state regime: subcasii) and subcasév) with Q>0.
B 2 Let us now briefly describe the sets of soliton parameters
' “’_eXF( T) relevant to each of the regimes mentioned above. For defi-
niteness we will use two configurations of soliton widths

o)

Q=+

&
I\)l'O
~

If both p andq are real, then so iQ. Here we have four

subcases corresponding to qualitatively different sets of roots d;=—ds, d»=0, W1 (68)
for real p andq.
(i) Q<0. This is possible only ifp<py, Po= d;=ds, dp=-2d;, W2. (69

—3(g%/4)*3 ThenA=B* and all three rootg; become real

£=x: and pairwise different The condition thap is real immediately means that
IR '

2
k1=2|AlcosQy, K2’3=2|A|COS<QOi?>, (65) Then
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p=—+(d;d,+d;d3+d,dy)+ e "0/  cosd, (71)
i i ‘ .

0= 57010205~ 7ge "0/ (die +dge '), (72

(I): 52_ 51+4Sl+452' (73)

Choosing the sets of widths to W1 andW2 we get, re-
spectively,

2 2

oy
wm=_1t,20
p 16+ 5 cos@

2

d.e€
q=—"sin®,

(74

where ep=exfd —vyfo/(2a)], and

3d2 €
@=""t, 0
p 16 + 5 cosd,

id3 id,e

@__ 91
q 32 8

cosd.

(79

1. Case I: =70
The characteristic equatiq®l) has the roots

(1=0, L=*\-p.

From Eq.(74) we get that for th&V1 configuration the con-
dition g¥=0 holds provided

(76)

d=km, k=0,1, (77)
which means that
d? €
Wt _q\k20

As a consequence we find that)>0 fork=0; fork=1 we
get thatp™®>0 only providedd,| is greater than the critical
value

|d1| >Acr,3r (79)

Aers= 2\/560 :

In all these caseg, ; are purely imaginary, i.e., these sets of

parameters lead to BSR.
Note that Eq.(77) means
52:51+k77_451_452, k:O,l (80)
If instead of Eq.(79) we have|d;|<A, 5 then p<0
and the roots/, ; become real. That means that takidg

below the critical value we will see a transition from BSR to

AFR.

The same considerations applied to W& configuration
lead to different results. From E¢75) we see thag®=0
holds if

PHYSICAL REVIEW B4 056617

d
cosb=— Eg’ (81
which implies that
A
|dy|<2e0= ﬁg (82)
and
dj
p?=15=0 (83

Such configurations obviously lead to BSR|df| is chosen
to be greater than the critical value in the right-hand side of
Eq. (82) we find that thenq® becomes purely imaginary;
such situation is considered below.

Let us briefly treat also the case of “equal” solitons, i.e.,
dj=0. Then obviouslyq=0, s;=s,=s3=7/8, and p
—(55/2)00343 As a result we find that if

Teb<T e, Tes—s<r 84
> PR e, 5502 1<7, (84)
thenp>0 and we have BSR; if
T ® 3T T 5 T g
F<P<—, e, —5<&-8<3, (895
thenp<0 and AFR follows.
2. Case Il p=0

In this case the characteristic equati@l) has as roots
é’k: 3V - qwkv

If in addition g is real then Eq(86) leads to a MR; otherwise
we get AFR.
For theW1 configurationp®=0 means

27il3

w=e k=0,1,2. (86)

di
Aga)?

this is possible only ifd;| <A 5. From Eq.(74) we get that
g™ is real and such configuration leads to MR.
For theW2 configurationp!®=0 holds if

cosd=—

(87)

3d?
8¢; -

3d?
(Agra)?’

which is possible only ifd;|<A, 3/+/3. From Eq.(75) we
find thatq® is purely imaginary, i.e., AFR follows.

cosd=— (89)

3. Case llI: p=§and = —E;eo.

This is possible only for th&/2 configuration, s@ andq
are given by Eq(75). The resolvent of the cubic equation
(61) in this case takes the form
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o- (p(Z))S . (q(2))2 _ 6_8 y2+ E 3_y2 y2+ E 2 4
27 4 8 3 2 o

6 .2
€ C 4c L
-l 5 @

wherey=d; /A ; andc=cos®.

It is easy to check tha®(y,c) is non-negative for alt
> —9y?/4 and vanishes foc=0 andc=—9y?/4. We have
to keep in mind also thdt|<1. Therefore, if §%/4>1 then -r
Q=0 in the whole interval-1<c<1. Following the argu-
ments in(v) above we conclude that this configurations leads
to BSR.

If we choose

Positions
(=]
T

|di|<3Aq 3, (90) o 20 40 et 60 80 100

then there will be an interval fob (73), FIG. 1. Two-soliton interactions and their comparison with the

42 CTC model. Solid curve, numerical results; dashed curve, predic-
1 i i =p,= = =
P<D<27— ¢y, o= arcco{ _ m 3)2> (91 tions from the Toda chain modet, =v,=1.0, §;=0, and8,= .

cr,

Choosing the solitons to have different widths leads to

for which Q<0; i.e., if Eq.(91) holds we have AFR. v10# 0 in Eq.(56) and removes the singularity of the corre-
If & belongs to the complementary interval sponding solution of the CTC system evei£ 0. This can
be seen from Fig. 2 that corresponds to a BSR. Of course
~ea~P=eq, (92 now the match between the MNSE simulation and the CTC

solution is better than in the previous case.

The situation changes if we consider solitons with phase
Stferences such thdt= . There we find a threshold value
for dy=—d,=(v1—vo)/vy, see Egq.(53). Wheneverd;
<A, We get an AFRsee Fig. 8] while ford;>A, , we
VI. THE CTC VERSUS NUMERICAL SOLUTIONS get an BSRsee Fig. 8)].

OF MNSE Let us now consider the three-soliton interactions. The
Cchoices of the soliton parameters illustrates each of the three
main configurations outlined in Section V B above.

Figure 4 provides examples of three-soliton configura-

thenQ(y,c)=0 and we have BSR.
An interested reader can easily extend these studies
other relevant configurations of soliton parameters.

It is our aim here to compare the predictions of the CT
model with the numerical solutions of the MNSE. Since the
full numerical investigation of the problem is a voluminous
and ambitious task we limit ourselves with=2 andN=3
soliton trains and fix upr=1 and the average width,=1. M=ol SEv i NPl Se N T

With this choice ofe=1 the derivative term in the MNSE 3l
cannot be treated as a perturbation to the NSE. With this
choice we are able to exhibit the differences between the 2 1
MNSE and NSEN-soliton train interactions. As we men-
tioned above, the dependence of the soliton interaction of the

MNSE solitons on the soliton phase difference is qualita- 2 4 _
tively different from the one of the NSE solitons. %
Indeed, let us start withl=2 soliton trains. The formulas & -1 7

from Sec. VA witha=1 and vg=1 show that “equal”
solitons(i.e., solitons with equal widthswith phase differ-
enced,— ;== (or I'=0) attract each other. In fact, this  _3| _
choice of the soliton parameters correspondyde 0 and
according to Eq954), (55) the solution to the CTC becomes
singular. From Fig. 1 we see that apart from a small neigh-

borhood around the singular points the CTC gives a good % 50 100 150 200 250 300

description of the two-soliton train of the MNSE; the singu- Time, t

lar points match rather well with the points at which the two  FiG. 2. Two-soliton interactions and their comparison with the
solitons are closest to each other. The distance to the firgfTC model. Solid curve, numerical results; dashed curve, predic-
singular points matche$,s y4 with T,g; given by formula  tions from the Toda chain modet;=0.95, »,=1.05, 5;=0, and
(57) with yg=0. S,=1.

056617-11



V. S. GERDJIKQV, E. V. DOKTOROQOV, AND J. YANG

PHYSICAL REVIEW B4 056617

Positions
o

5

Positions
(=]

2t i

50 100 150 200 250
Time, t

300 -8

0 50 100 150 200 250 300
Time, t

FIG. 3. Two-soliton interactions and their comparison with the CTC model. Solid curve, numerical results; dashed curve, predictions
from the Toda chain mode(a) »,=0.97, »,=1.03, §;=0, and5,=0; (b) »,=0.96, v,=1.04, §;=0, and5,=0.

tions withg= 0 characteristic for case I. Both sets of param-tion [9] and generalized to arbitrary number of solitons
eters are such thab = 7. Besides on Fig. @) we haved; [5-8], to the case of the modified nonlinear Safinger
<Az and as a consequence an AFR must follow. In Fig.equation. The aim of our paper was twofold. First, we would
4(b) we haved;>A, 5 for which the CTC model predicts a like to investigate a possibility to apply an integrable chain-
BSR; the match with the simulation here is not that good. like model to capture adiabatic dynamics of MNSE solitons
Figure 5 shows a three-soliton configurations with O within the N-soliton train. Because a functional form of the
characteristic for case Il. In Fig(b) the set of widths i1 MNSE soliton is not of the familiar hyperbolic-secant type
andd; <A 3 and, therefore, a MR follows.
In Fig. 6 we usedVV2 set of soliton widths and a choice of jmportant features as compared with the NSE case. We show
parameters characteristic for case Ill, igis real whileqis  hat, under specific well-defined conditions, the dynamical

purely imaginary. In Fig. @ Q>0 with BSR, and in Fig.  gystem of A equations for soliton parameters is reduced to
6(b), we haveQ<0 and AFR.

VIl. CONCLUSIONS

with a real argument, we might expect an existence of some

the completely integrable complex Toda chain model Wth
nodes. This is a strong argument in favor of universality of
the CTC model foN-soliton interactions. Though the same

In this paper we extend the formalism by Karpman andCTC arises also for the NSE, there are a few peculiarities
Solov’ev proposed to describe the NSE two-soliton interacinherent in the MNSE solitons. In particular, we found out

20

a)

b)

15

10

Positions
(=]

15

Positions

50 100 150 200 250
Time, t

15 . . . . .
300 () 50 100 150 200 250 300
Time, t

FIG. 4. Three-soliton interactions and their comparison with the CTC model. Solid curve, numerical results; dashed curve, predictions
from the Toda chain modela) v,=1.04, v,=1.0, v3=0.96, §;=0, &,=—0.0392, ands;=0.0016;(b) v,=1.07, v,=1.0, v3=0.93,
6,=0, 8,=—0.0676, ands;=0.0049.
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Positions
Positions
o

5} . 5t J

50 100 150 200 250 300 0 50 100 150 200 250 300
Time, t Time, t

FIG. 5. Three-soliton interactions and their comparison with the CTC model. Solid curve, numerical results; dashed curve, predictions
from the Toda chain mode{a) v;=1.04, v,=1.0, v3=0.96, §;=0, §,=2.1703, and5;=0.0016;(b) v;=1.02, v,=0.96, v3=1.02, §;
=0, §,=—1.0862, ands;=0.0420.

more complicated phase behavior of fiesoliton train. Us-  are generally nonintegrable as wgli0o—12,4Q.

ing the integrability of the CTC, we are able to predict vari- Second, we consider the MNSE as a true starting inte-
ous asymptotic regimes of the MNS¥esoliton train evolu-  grable model to describe subpicosecond pulse evolution in
tion. Besides, we point out the sets of the initial solitonnonlinear media. Strictly speaking, to justify a relevance of
parameters corresponding to each of the dynamical regimesur results to actual ultrashort pulses, we should also account
Numerical simulations of the MNSE two- and three-solitonin our model at least two additional effects, the third-order
interactions are in very good agreement with the CTC-basedispersion and intrapulse Raman scattering. These effects
predictions. Evidently, the results obtained can be extendedreak the integrability of the MNSE, and we are faced with a
to treat also multicomponei(tecton generalizations of both truly perturbed CTC. Following the lines of recently estab-
the NSE(see, e.g., Ref$39—-41] and references thergiand  lished interrelations between the perturbed NSE and per-
MNSE [42—-44. Work in this direction is now in progress. turbed CTC[8], we can extend the above formalism to ac-
We note that in nonintegrable wave systems, Toda-chaicount for small actual perturbations that act along with the
type equations may still be derived for the adiabatic interaceffective perturbatioril4). The corresponding results will be
tion of N nearly identical solitary waves, but such equationspublished elsewhere. The single MNSE soliton dynamics in

2 4 5k
)
[ = [7)]
] c
=20 == e e e o o - h=]
7] = 0
g 2
o o
-2 7 -5r

) 50 100 150 200 250 300 0 50 100 150 200 250 300
Time, t Time. t

FIG. 6. Three-soliton interactions and their comparison with the CTC model. Solid curve, numerical results; dashed curve, predictions
from the Toda chain modeka) v,=1.02, »,=0.96, v3=1.02, §,=0, §,=3.142, and§3=0.0420, and(b) v;=1.02, v,=0.96, v,
=1.02, 6,=0, §,=0.0, ands;=0.0420.
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the presence of the intrapulse Raman scattering is discusseglstem governed by the classical Thirring mof&l,52.

in a recent pap€er5. This seems natural in view of the facts thét CTC de-
The MNSE is not the only candidate to describe subpicoscribes the adiabatic soliton interactions for all nonlinear

second optical pulse dynamics. The other equations studiesjuations of the NSE hierarchyij) the massive Thirring

in this respect are of more general form model is just another representative of the MNSE hierarchy.
There remain several natural questions that will be ad-

dressed in sequels of this paper. The first one is the kimit

28 —0 in which we should recover the results for the NSE

N-soliton trains. We have proved that the Karpman-

Solov’ev-like equations for MNSHE solitons transform un-

due to the presence of third-order dispersion and additiond{®" this limit to the known NSE formulas. The s_econd one

types of nonlinearities. If we assume tha:B,:8;  CONCems the treatment o_f the perturbed versions of the

—1:6:0 we obtain Hirota equation[46] while for MNSE and the corresponding perturbed CTC model; for the

B1: B2 Bs=1:6:3 we getanother integrable nonlinear equa- NSE such perturbed CTC models have been briefly analyzed

tion known as the Sasa-Satsuma equafidfi-49. It is in Ref.[8].

rather natural to study thél-soliton interactions also for

these equations. Although it may seem that @) is simi-

99 1% &> d alq|?

. a q
- - 2 R 2 1
5t aX2+|q| q+ie Blax3+'82|q| % T8

=0, (93
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